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ABSTRACT

The formation problem of distributed mobile robots was studied in the literature
for idealized robots. Idealized robots are able to instantaneously move in any direction,
and are equipped with perfect range sensors. In this study, the formation problem of
distributed mobile robots that are subject to physical constraints is addressed. Mobile
robots considered in this study have physical dimensions and their motions are governed
by physical laws. They are equipped with sonar and infrared range sensors. The
formation of lines and circles by using the potential field method is investigated in detail.
It is demonstrated that line and circle algorithms developed for idealized robots do not
work well for physical robots. New line and circle algorithms, with consideration of
physical robots and sensors, are presented and validated through extensive simulations.
Movement in formation of a small group of physical mobile robots is also studied. An
algorithm is developed using the potential field method that makes robots move through a

workspace filled with many obstacles while maintaining the formation.
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I. INTRODUCTION

A. GENERAL

Given a group of mobile robots (say, 20 robots) randomly placed on a laboratory
floor, how would one control them to form a geometric pattern such as a circle without
using a centralized coordinator? This is the formation problem of distributed mobile
robots studied in References 1-5. Distributed robots make motion plans based on a given
task goal of the group and the perceived information about their environment from
onboard sensors without the aid of a centralized coordinator.

The formation problem of distributed mobile robots has been studied for idealized
mobile robots [Ref. 1, 2, 4] -- robots that are represented by a point, able to move in any
direction, and equipped with range sensors that can determine the position of all other
robots. Since a robot is a point, two or more robots may occupy the same location. Each
robot has its own coordinate system and there is no common, global coordinate system.
Furthermore, these robots do not communicate with each other. Under these
assumptions, Suzuki et. al have developed a number of distributed formation algorithms.
In particular, they developed algorithms for multiple distributed mobile robots to form
circles, simple polygons and line segments; to uniformly distribute robots within a circle
or a convex polygon; and divide them into groups4 [Ref. 1,2,4,5].

In the previous study [Ref. 1, 2, 4], even though the number of robots
participating in a given task is assumed to be unknown, the perfect sensor assumption
makes it possible for each robot to “see” the location of all other robots, and hence to
determine the number of robots. Perfect sensors are not occluded by the presence of other
robots. One of the biggest challenges in implementing existing formation algorithms is
the inability to sense the location (or even just the presence) of all other robots by using
sonar or infrared sensors. Each robot may see a different number of robots at each instant

of time.




Line and circle formation, or formation of any geometric patterns in general, is
only one of many issues of distributed mobile robots [Ref. 6]. Representative work
addressing other issues of distributed mobile robots includes cellular robotics systems
[Ref. 7, 8, 9], and dynamically reconfigurable robotics systems [Ref. 10]. These systems
can change their overall shape depending on the task and the environment by

autonomously detaching and combining cells.
B. PROBLEM STATEMENT

Based on earlier work, this thesis studies the formation problem of distributed
“physical” mobile robots. The mobile robots considered in this.study have physical
dimensions (hence two robots cannot occupy the same spot), and their motions obey
physical laws (hence wheeled mobile robots must satisfy nonholonomic constraints).
Furthermore, robots are assumed to be equipped with range sensors having realistic
physical properties. The robot simulator from Nomadic Technologies, Inc. is used.
Robots in the simulator realistically simulate the motion behavior and sensor systems of
the Nomad 200 mobile robots [Ref. 21, 22]. The Nomad robot has a synchronous drive
mechanism which enables it to translate, steer, and rotate (its turret) independently. The
robot is nonholonomically constrained, thus not able to instantaneously move in the
lateral direction. The robot's sensor systems include tactile (bumper) sensors, infrared

sensors, ultrasonic sensors, and laser sensors. All but the laser sensors are used in the

simulation of this study.

This thesis also studies the development of behaviors for formation maintenance
in a small group of physical mobile robots. In addition to maintaining their position in
formation, robots must also move to a specified goal location while avoiding collisions
with obstacles and other robots. Most work done in this area focused on the dynamics
and stability of multi-robot formations. Ref. 11 developed a strategy for robot formations -
where individual robots are given specific locations relative to a leader or neighbor to
maintain their positions. Ref. 12 demonstrated formation genération by distributed

control. Both studies centered on the analysis of group dynamics and stability and did not




provide obstacle avoidance. Ref. 13 integrated motor schemas, for relative positional

maintenance with existing navigational behaviors to help robots complete navigationai
tasks while in formation. The formation behaviors were implemented as motor schemas,
a type of reactive navigational strategy [Ref. 14]. Each robot is assigned a unique
identification number (ID), and a robot's designated position in a given formation depends

upon its ID.
C. IMPLEMENTATION OF COLLISION AVOIDANCE

Different lschemes for collision avoidance were examined in References 4, 12, 14,
15, 16, 17, 18, 19. The method propdsed in Ref. 4 is discussed in the following chapter.
The strategy proposed in Ref. 16 is that if a robot detects another robot on its way, it stops
and waits for some fixed period of time. If a robot is still present, the robot turns left and
proceeds forward. The method proposed in Ref. 12 adds an initial step to the algorithms
from References 1 and 5 to avoid collisions. Motor schemas [Ref. 14] is another method
for navigation and collision avoidance.

Motion control and collision avoidance in this study are achieved by
implementing a potential field algorithm [Ref. 20, 21]. To each robot of concern, the
presence of other robots generates a repulsive force which keeps them apart, and the goal
position produces an attractive force. Because the workspace is assumed to be obstacle-
free, the shape of robots is circular, and the goal position changes as other robots move,
the local minimum problem of the potential field method is rarely encountered in the

simulations.
D. OUTLINE OF THE THESIS

Chapter IT provides background information including the Nomad 200 mobile
robot and the simulator as well as a brief description of the potential field algorithm.
Chapter Il discusses the implementation of the existing line algorithm with physical
robots and presents a modified version of the existing algorithm which works well for
physical robots. Chapter IV studies the existing circle algorithm and simulation results

when it is implemented with physical robots. A modified algorithm is introduced which




is directed towards forming a better approximation of a circle. Chapter V discusses an
algorithm based on "leader-follower" technique to help a small group of robots move in
formation while avoiding collisions.  Chapter VI presents the conclusion and
recommendations for follow-on studies. The source codes for the modified line
algorithm, modified circle algorithm and the moving in formation algorithm are presented

in Appendix A, B, and C respectively.




II. BACKGROUND INFORMATION

This chapter provides background information so that the reader has an
understanding of the NOMAD 200 mobile robot, as well as the potential field method

which is implemented to realize the motion of robots.
A. NOMAD 200 MOBILE ROBOT

The Nomad 200 is an integrated mobile robot system with four sensory modules
including tactile, infrared, ultrasonic, and laser systems [Ref. 22]. The Nomad 200 has
on-board computers for sensor and motor control and for host computer communication.
The mobile base keeps track of its position and orientation through dead-reckoning. The
Nomad 200 includes a software package for the host computer with a graphic interface
and a simulator.

1. Mechanical System

The Nomad 200 mobile base is a three servo, three-wheel synchronous drive non-
holonomic system with zero gyro-radius. The three wheels translate together (controlled
by one motor) and rotate together (controlied by a secondl motor). A third motor controls
the angular position of the turret. The robot can only translate along the forward and
backward directions along which the three wheels are aligned (this is referred to as non-
holonomic constraint, similar to that of a car). The robot has a zero gyro-radius, i.e. the
robot can rotate around its center.

The Nomad 200 has a maximum translational speed of 20 inches per second and a
maximum rotational speed of 60° per second. It has a diameter of 18 inches and a height
of 35 inches.

2. Sensor Systems

The robot's sensor systems include tactile (bumper) sensors, infrared sensors,
ultrasonic sensors, and laser sensors. All but the laser sensors are used in the simulation
of this study. The tactile system which consists of two bumper rings is used to detect

contact with any object.




The Nomad 200 has a 16 channel reflective intensity based infrared ranging
system that provides 360 degrees coverage. Each of the 16 sensors is composed of two
LED emitters and a photodiode detector enclosed in a delrin housing. The range to the
object(s) is determined by the intensity of the light from the emitter reflected back to the
detectors from an object. The infrared sensors are quite accurate within 35 inches, but not
reliable beyond 35 inches.

The Nomad 200 also has a 16 channel sonar ranging system which can give range
information from 17 inches to 255 inches with 1 percent accuracy over the entire range.
The sonar system is a time of flight ranging sensor based upon the return time of an
acoustic signal. The sensors are standard Polaroid transducers with a beam width of 25°.
The circumference of the robot is covered by 16 sensors.

Although the user manuals [Ref. 21, 22] for the Nomad 200 robot state that the
maximum sonar range is 255 inches, it is determined by two parameters (half-cone and
overlap) which are stored in the robot.setup file. The sonar sensors have a non-zero
beam-width, i.e., they can detect an object as long as it overlaps with this cone (and is
- within detectable distance). The half beam-width for sonar is specified by half-cone in
the setup file. If this variable is set to 0, the sensor can detect an object only if it
intersects with the ray drawn from the sensor along the direction where the sensor is
pointing. When this variable is set to some positive values, the sensors can detect objects
that fall within the cone specified by this variable assuming there is sufficient overlap
between the object and the sonar cone (as specified by overlap in the setup file). Briefly,
half-cone sets half the angular range of the main lobe of the sonar while overlap sets the
minimal apparent size of a surface to be detected when using the conical mddel.

The sonar half-cones have to overlap in order to cover 360 degrees around the
robot. If they overlap quite a distance away from the robot, then the triangular area that
stays between two consecutive sonars and the intersection point of sonar beams cannot be
covered at all. On the other hand, anything in the overlapped zone is seen by both sonars.
This means that the position of that object cannot be calculated accurately. Worst of all,

the sonars that see the same object which is in their overlapped zone, cannot sense




another object even if it is on the line of sight, unless it is closer than the one in

overlapped zone. So, letting the sonar beams overlap very close to the robot creates a
huge overlapped zone, which in turn affects the sight of the sonars negatively. The
maximum sonar range in the area that is exactly in the middle of two consecutive sonars,
is shorter than the one in line of sight area. The values of half-cone and overlap have to
be set in such a way to best balance these factors. Table 1 illustrates the results of the
simulations with different values of half-cone and overlap, in order to detect an object of

a size of the Nomad 200 robot.

Table 1. Simulation Results to Determine the Values of
Half-cone and Overlap.

Half-cone' | Overlap’ A’ B* [N
125 0.05 51 53 - 62
125 0.07 208 210 212
125 0.10 128 - 144 145
125 0.15 74 . 75 85
105 0.07 145 154 236
105 0.08 131 139 206
105 0.09 119 130 180
105 0.10 111 115 162
110 0.08 159 175 194
110 0.09 143 152 174
115 0.07 185 187 235
115 0.08 166 168 188
115 0.10 129 130 146

' Half-cone (in tenths of degrees)

? Overlap (expressed as a ratio -- 0.1=10% -- to the angular range of the
main lobe);

3 A: The range that two consecutive sonars first start to sense the same robot
in the overlapped zone (in inches) »

* B: The maximum range in the overlapped zone to see a robot (in inches)

3 C: The maximum line of sight range to see a robot (in inches)

The first set of values in Table 1 represent the default values which are set mainly
for the detection of large objects such as a wall. The best values for half-cone and
overlap to detect an object of the size of the Nomad 200 robot was determined to be 10.5°

and 0.8 percent respectively, and used throughout all simulations.




3. Robot Simulator

The Nomadic Host Software Development Environment is a full featured object
based mobile robot software development package for the Nomad 200 mobile robot [Ref,
23]. It consists of two parts: the server and the client. The server performs four
functions: Host «—» Robot Interface which allows complete control of the robot from a
host computer, Robot Simulator which simulates the Nomad 200 robot (including its
basic motions: translation, steering and rotation, and its basic sensor systems: tactile,
infrared, sonar and laser), Graphic User Interface which provides graphic display for
various sensory information and convenient interface with the robot and the robot
simulator, and Client ¢ Server Language User Interface which allows users' C or Lisp
program (acts as a client process) to access the server. The client part provides the link
(in terms of a set of interface functions) between the application program and the server.

The graphical user interface consists of several windows that give information and
allow control of a robot. First, there is the world (map) window which gives an overall
view of the environment (real or simulated) that the robots are in as well as the positions
of each robot relative to the environment and each other. Also there is the robot window,
(one copy for each robot), which contains information about each individual robot, such
as current command executed, position, orientation, and sensor data history. Attached to
each robot window are two windows that give more detailed information about the
current sensor readings, including ray and half-cone data. Each time any of the functions
that return sensor data is called, the sensory data returned as well as the current positions
of robots are displayed graphically on these windows. The users are allowed to draw
maps in the world window to simulate the environment. The figures that show the
simulation results in the following chapters are the snapshots of the world window taken
at different time instants during a simulation.

In order to run the simulator, the executable server program (Nserver), the setup
files for the world (world.setup) and for each robot (robot.setup), as well as the license
file must be in the same directory. To start the server, one simply executes the Nserver.

Individual setup files can be specified as command line parameters. If the setup files are




not specified, the server will automatically look for world.setup and robot.setup. 1t is
necessary to have a separate setup file for each robot to be created. The name of each
robot setup file must be specified in the world.setup file. The best way to discriminate
the robots is to set a different color for each robot in its own robot.setup file.

The application program for each robot should run simultaneously as a separate
process, by taking advantage of multitasking capabilities of UNIX operating system.
This makes debugging very easy and provides the possibility to test each behavior

independently as well as to add or remove some robots during the run.
B. POTENTIAL FIELD METHOD

A robot in potential field method is treated as a point represented in configuration
space as a particle under the influence of an artificial potential field U whose local
variations reflect the “structure” of the free space. The potential function can be defined
over free space as the sum of an attractive potential pulling the robot toward the goal
configuration and a repulsive potential pushing the robot away from the obstacles [Ref.
20]. Motion planning is performed in an iterative fashion. At each iteration, the artificial
force induced by the potential function at the current configuration is regarded as the most
appropriate direction of motion, and path planning proceeds along this direction by some
increment.

The general idea is that the robot is attracted toward its goal configuration while
being repulsed by the obstacles. In this section, this idea is illustrated with the definition
of one possible potential function, in the case where robot moves freely in W=R", with
N=2 or 3, i.e. C=R". (W denotes Robot's workspace, R is the set of real numbers, C
denotes the configuration space of a robot. An element of C is denoted by g.) A more

detailed discussion can be found in [Ref. 20].




The field of artificial forces F(g) in C is produced by a differentiable potential
function:
Uu.C

Sree

with: f’(q) = —ﬁU(q)

—> R,

)

where VU q) denotes the gradient vector of U at g. In C=RY(N =2o0r3 , We can
q

write g=(x,y) or (%, y, z), and:

aUu
o fougl Z

VU = 9(7 or VU = 3% i )
Y 2
oz

In order to make the robot attracted toward its goal configuration, while being

repulsed from the obstacles, U is constructed as the sum of two elementary potential

functions:

Ulg)=U,(9)+U,,(a) 3)

where U, is the attractive potential associated with the goal configuration g, and U,, is
the repulsive potential associated with the C-obstacle region. U, is independent of the C-
obstacle region while U,,, is independent of the goal configuration.

With these conventions, F is the sum of two vectors:

F:m = _VUatt and E‘ep = _VUrep H (4)
which are called the attractive and the repulsive forces, respectively.
1. Attractive Potential

The attractive potential field U,, can simply be defined as a parabolic-well, i.e.:

1
Uau (q) = Eépgzoal (q) ’ (5)

where & is a positive scaling factor and p,..(g) denotes the Fuclidean distance g - Geoal-

The function U, is positive or null, and attains its minimum at Goas Where U(Ggou) = 0.
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The function p,., is differentiable everywhere in C. At every configuration g, the

attractive force F

att

deriving from U, is:

E,(4)=-VU,(q)
= 8Dt (@) VP (9) ©)
= _é(q —q goal) ‘

The parabolic well demonstrates good stabilizing characteristics when used for

on-line collision avoidance [Ref. 10]. This is because it generates a force F,, that

ait

converges linearly toward 0 when the robot's configuration gets closer to the goal

configuration. On the other hand, F

o increases with the distance to the goal

configuration and finally tends toward infinity when p,,,(q) = . Alternatively, U,,
can be defined as a conic-well, i.e.:

arr( ) épgoal( ) : (7)

Then, the attractive force is:

Fatt (q) = _évpgoal (‘I)

(q q gaal)

o §"q “ D goua

®

The amplitude of F F,,(g) is constant over C, except at g,.,, where U, is singular.

Since the amplitude of the force does not tend toward 0 when g — g,.., the conic-well
potential does not have the stabilizing characteristics of the parabolic-well function.

The advantages of both the parabolic and the conic-wells can be combined by
defining the attractive potential as a parabolic-well within a distance “d” from the goal
configuration and a conic-well beyond that distance. In this case a discontinuity problem
1s encountered as plotted in Figure 1(a) when it is implemented by using the above conic-
well definition. The attractive force must be made continuous at the transition point,

which can be achieved simply by multiplying the conic-well attractive potential by “d”.
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Then, the resulting attractive force can be defined as follows, which is plotted in Figure
1(b).

-

<d

- é(q - qgo,,,) if "q ~ 4 goal

F,(q)= ©)

(0- ) it g gou] > -
d ~ 9 goal

~&d

2. Repulsive Potential

The main idea is to create a potential barrier around the C-obstacle region that
cannot be traversed by the robot's configuration. In addition, the repulsive potential
should not affect the motion of the robot when it is sufficiently far away from the C-

obstacles. These constraints can be achieved by defining the repulsive potential function

as follows:

0

( 2

1 1 1

—n[—-——-} if plg) < p,

2

U,,(q)= pla) # : (10)

{ 0 ifP(Q) > Po

where 77 is a positive scaling factor, p(g) denotes the distance from q to the C-obstacle

region CB, i.e..

plg)= min Jg-¢, 1)

q'eCB
and p,is a positive constant called the distance of influence (or cut-off distance) of the C-
obstacle. The function U, is positive or null, tends to infinity as ¢ gets closer to the C-
obstacle region, and is null when the distance of the robot's configuration to the C-

obstacle is greater than p,.

12




Fatt(q) 1
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Figure 1. Plot of an attractive force that is defined by combining the attractive
potential as a parabolic-well within a distance “d” from the goal configuration and a
conic-well beyond that distance. Figure 1(a) illustrates the discontinuity problem,
and (b) illustrates the provided continuity at the transition point.
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If CB is a convex region with a piece wise differentiable boundary, p is
differentiable everywhere in C,,,. Then the artificial repulsive force deriving from U, is

defined as follows:

I—f’rep (Q) = _§ Urep (q)
12)

—

"[L-LJ 21(q)Vp(q) if p(g) < p,

0 if pg)> p,

Let q; be the unique configuration in CB that is closest to g, 1.e. that achieves

la - gl = o(q). The gradient V p(qQ) is a unit vector pointing away from CB and
supported by the line passing through q. and q. |

If we retract the (unrealistic) assumption that CB is convex, p(q) remains
differentiable everywhere in Cp,,, except at those configurations q for which there exist
several g € CB verifying ||q - q.| = p(q). These configurations form a set of measure

zero in C which is in general locally (N - 1)-dimensional. The force field F,, is defined

on both sides of this set, but with differently oriented vector values. This may result in
producing paths that oscillate between the two sides of the set. At those configurations q
for which there exists only one q. € CB verifying ||q - qcl = o(q) at a time, there may be
big jumps between the angular directions of consecutive qc configurations during the
motion of robots. This may cause serious oscillatory behaviors which in turn demolishes
the robustness in motion.

One way to eliminate this difficulty is to find out the exact profile of the C-
obstacle region CB, and then make the motion planning. This requires too much
computation and it is not possible to obtain the exact profile with available sensors.
Another way is to decompose CB into convex components CB;, i =1,...r, and to associate

a repulsive potential Ucp; with each component. This is easy to implement in Nomad 200
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mobile robot by using 16 sensors that have 22.5° between two consecutive sensors, which
automatically decomposes CB into 16 components. Each obstacle detected by any sensof
(whether it is a separate obstacle or a part of a big obstacle) produces a repulsive force.
The resulting repulsive force is the sum of repulsive potential fields created by each

individual sensor contact. Thus, the resulting artificial repulsive force is:

15
F;ep(lotal) (q) = ;Eep(i) (q) ’ (13)

where 7 represents the sensor number. In the Nomad 200 robot, there is one infrared and
one sonar sensor that can scan the same direction. Infrared sensor information is
considered if the returned value is within maximum infrared sensor range, and the sonar

information is considered otherwise.
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III. FORMATION OF A LINE SEGMENT

This chapter discusses the results and associated problems of the existing
algorithm when it is implemented with physical robots. Then a modified version of the

existing algorithm which works well for physical robots is presented.
A. EXISTING LINE ALGORITHM

The following is the original line algorithm proposed in Ref. 5. It is assumed that
each robot repeatedly becomes active and inactive (sleep mode) at unpredictable time

instants. Each time a robot becomes active, it does the following:

e Step 1. Determines the furthest robot Rrand the closest robot R..

e Step2. Calculates the distance d from its current position to the point p
that 1s the foot of the perpendicular drop from itself to the line passing through
R.and Ry

e Step3. Moves min{d,v} towards point p, where v is the maximum distance
the robot can move at a time.

Assuming that each robot is a dimensionless point, the algorithm enables all robots to
form a line segment [Ref. 5]. In a revised version of the algorithm, the physical
dimension of the robots was considered, and a simple collision avoidance strategy was

implemented [Ref. 4]. The strategy works as follows:

o If a robot detects another robot within a certain distance in the direction of its
move, it then swerves to the left minimally, provided that it successfully finds
a direction that is clear of any robots.

e If no such left swerve is found possible, the robot decides not to move until
either its path becomes clear or a suitable left swerve becomes possible.

First, this algorithm was simulated without any collision avoidance scheme, and
an unacceptable number of collisions was experienced which prevented robots from

forming a line. Then the algorithm was implemented with the simple left-swerve collision
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strategy and 20 simulations was run, each time with a random initial distribution of the
robots. A number of problems with the implementation of the algorithm were observed.

A problem occurs when four or more robots are very close to each other and try to
avoid collisions. The robot with whom each one is trying to avoid collision changes
frequently (so do R. and R, for each robot), which in turn changes the goal configuration
of each one. In this case the robots jam each other. Another frequently encountered
problem is illustrated in Figure 2. For the convenience of discussion, let us name the
robots R; to Rs from the upper-right comer to the lower-left corner in Figure 2(a),
respectively. Figure 2(a) is a typical distribution where robots get closer to form a line
segment. At that moment, R3 swerves to its left to avoid R4. R4 moves downward to its
goal location, which is the perpendicular drop to the line passing through the closest robot
R3 and furthest robot Rs. At the same time, the other robots go through a similar process.
Figure 2(b) illustrates the distribution of the robots a few iterations later.

As the simulation continues, robots reconvene into a distribution similar to the

one shown in Figure 2(a). Robots repeat the motion sequences and fail to form a line

segment.

It is observed that robots form a line segment only when the initial distribution is
very close to a line segment and little or no collision avoidance is required. Finally, it is
noted that a uniform distribution of robots along the line segment cannot be accomplished
using this method.

Aiming to overcome the collision avoidance problem encountered in the above
implementation, the left-swerve strategy was replaced with the potential field method. It
turns out that the potential field method does not help at all. The ro_boté show various
group behaviors other than forming a line segment. The result of a simulation is
discussed below.

Figure 3(a) shows the initial, random distribution of six robots while Figure 3(b)
to 3(e) illustrate their progressive movements. As soon as the simulation begins, robots
start getting closer to each other as a natural result of the algorithm. A problem occurs

when point p is within the physical dimensions or repulsive force range of a robot or
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between two robots that do not have enough room in-between for another robot.
Unfortunately this happens in most simulations, unless the initial distribution is very

close to a line segment.

(a)

(b)

Figure 2. Implementation of the existing algorithm with the left-swerve collision
avoidance strategy.

19




e«
o T e G:::&::“
o ..
o . c, ..... EEIRERS

@ ®)
B e
.......... 1 T

s @

©
e ‘o
..... o ’

© ®

Figure 3. Selected images of the existing line algorithm simulation using the
potential field method from an initial distribution to a final stage: (a) the initial
distribution, (b)-(e) intermediate steps, and (f) the final distribution of the robots
trying to form a line segment. The two robots on the lower-left side are
approximately where they should be while the remaining ones are in deadlock.
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Eventually robots approach a deadlock configuration as shown in Figure 3(f). In
this configuration, the attractive force generated by goal point p is negated by thel
repulsive force generated by surrounding robots. Consider the robot at the top in Figure
3(f), for instance. Its furthest robot Ry is the upper one in the two-robot group (it cannot
see the lower one in the group), and its closest robot R. is the closest one in the usual
sense. Goal point p in this case corresponds to a point within the closest robot's repulsive
force range. This is also true for all other robots in the four-robot group.

Another line algorithm is proposed in Ref. 1 and Ref. 4. The user selects two
robots that will be the endpoints of the line segment and does the following, possibly

concurrently:

e Move the two robots manually to their desired final positions.
e Let all other robots execute algorithm FILLPOLYGON

where FILLPOLYGON is a technique proposed in Ref. 4 to distribute robots nearly
uniformly within a convex polygon, starting from an arbitrary initial distribution except
anomalies.

This algorithm is not implemented in this study as the first task is clearly not
distributed, and it does not coincide with the autonomous characteristics of distributed

mobile robots.
B. MODIFIED LINE ALGORITHM

Although the existing algorithm does not work well for physical robots to form a
line segment, its main idea is still valid. As discussed above, a problem occurs if the goal
point p on the line passing through the closest (R.) and furthest (Ry) robots is occupied by
another robot, or if there 1s not énough room for another robot at the goal point. To
circumvent the problem, the algorithm was modified so that the goal point p is still
chosen to be on the same line, but at a location where there is room for another robot.

Since each robot executes the same program, the discussion below is concerned with a

21




robot called R for convenience, which can be any one of the robots. At each iteration,

robot R does the following:

e Stepl.  Determines the closest robot R. and furthest robot Ry based on its
sensor readings.

e Step2. Determines if point p, the foot of the perpendicular drop from its
current position to the line / passing through R, and Ry, is between R, and Ry.

e Step3. Ifyes, and if there is enough room for robot R to fit in-between R,
and Ry, it proceeds towards the mid-point, which is denoted by pm.

e Step4. If p is not between R. and Ry, or if there is not enough room
between R. and R; it proceeds towards point p; on the line ! which is d
distance away from R, in the opposite direction of Ry, where d is the minimum
distance that would prevent any repulsive force being applied to either robot.

Figure 4 shows the results of a simulation of this algorithm. Figure 4(a) is the same
starting distribution as in Figure 3(a). Figures 4(b) through 4(e) show some selected
intermediate distributions while Figure 4(f) illustrates the final distribution.

Some comments on the algorithm are in order. As mentioned earlier, the potential
field algorithm is utilized to avoid collision. If d, is used to denote the cut-off distance of
repulsive forces in the potential field algorithm, any obstacles (in this case other robots)
which are less than d, distance away from robot R will generate repulsive forces to robot
R. In Step 3, when determining if there is enough room to fit another robot between R,

and Ry, the distance from R. and Rymust be at least:

R.R|=2r,+2d,, (14)

where 7, is the radius of the robots. (A Nomad 200 robot is cylindric in shape. In the
simulator, it is represented by a circle.) That is, if there is at least 2 ro +2 d, distance
between R. and Ry, robot R will be able to “‘squeeze” in. This is true even if there are

other robots between R, and Ry
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Figure 4. Selected images of the modified line algorithm simulation: (a) the initial
distribution, (b)-(e) intermediate steps, and (f) the final distribution of the robots
forming a line segment.

23




In Step 4, the distance d is given by
d=2r+d, . 15)

There is, however, a problem in implementing Step 4 if point p is between R, and
Ry. Sending robot R directly to p, mostly results in a local minimum while the robot tries
to move to the other side of R.. This is inevitable if the robot's direct route to pa is within
the repulsive force range of R,. This 'problem is avoided by sending the robot to an
intermediate point which is d distance away from R,, on the line that is perpendicular to /
at R.. There are two points on this perpendicular line which are d, distance away from R,
but there is an obvious choice, the one which is closer to robot R. As soon as robot R
reaches this intermediate point within a close proximity, its goal point is changed to p,.

If robot R detects only one robot nearby (which is the case if it is at the endpoint
of the line segment), it positions itself d, distance away from the detected robot. If robot
R does not detect any robots nearby, it can execute an algorithm to search for possible
existence of other robots, which is not in the scope of this study.

Finally it is noted that all robots will uniformly distribute in the line segment

because each robot tries to go to the mid-point between its neighbors until it gets into the

repulsive force range of its neighbors.
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IV. FORMATION OF A CIRCLE

This chapter first discusses the existing circle formation algorithm, and simulation
results from implementing the existing algorithm. Observing problems encountered with
the existing algorithm, a sequence of modification and improvement is proposed. The
improvement is directed towards forming a better approximation of a circle while

uniformly distributing robots on a circle.
A.  EXISTING CIRCLE ALGORITHM

Let robot R be any one of the distributed robots participating in the task of circle
formation. The existing circle algorithm works as follows [Ref. 5]. As before, robot R
becomes active and inactive at random instants of time. Each time robot R becomes

active, it:

e Stepl. Determines the furthest robot Rrand closest robot R..

e Step2. Calculates the distance d from its current position to the middle
point p,, between Rrand R..

e Step3. Moves a distance of min{d-r, v} towards p,, if (d-r) >= 0, or a
distance of min{r-d, v} away from p,, if (d-r) < 0, where v is the maximum
distance that a robot can move at a time, r is the desired radius of a circle to
be formed.

Figure 5 shows the results of a simulation of this algorithm. The desired radius of
the circle is 28.0 inches. (The radius of the Nomad robot is 9.0 inches.) Figure 5(a) is the
initial, random distribution of robots. Figure 5(b) to (¢) show the intermediate positions
of robots, and Figure 5(f) illustrates the final stage of the simulation. The final
distribution of robots is a good approximation of a circle, and robots are fairly uniformly
distributed. However, the degree of uniformity depends on the number of robots. Figure
6(a) shows the final distribution of five robots. The distribution is apparently less

uniform.
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Figure 5. Selected images from a simulation of the existing circle algorithm
implemented by using the potential field method: (a) the initial distribution, (b)-(e)
intermediate steps, and (f) the final distribution of the robots forming a circle.
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Figure 6. The final distributions of two more simulations of the existing circle
algorithm started from the same initial distribution as the earlier simulation: (a)If a
robot is missing, the remaining robots still form a circle, but are not uniformly

distributed (r=28 inches). (b) The robots fail to form a circle for a relatively large
desired radius (r=120 inches).

A minor problem is that the radius of the final circle is always smaller than the
desired radius (20 inches versus 28 inches ‘in this case). This is because p, does not
correspond to the origin of the circle. Consequently, the final formation appears as two

half-circles put together. In Figure 5(f), the three lower-left robots form a half-circle as
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do the three upper-right robots. This is the same source that causes robots to form g
Reuleaux’s triangle [Ref. 1, 4, 5].

Another problem occurs when the desired radius becomes relatively large. With
limited sonar range, a robot is not able to see some robots as it moves outwards to form a
large circle. With the same initial distribution as in Figure 5(a) and Figure 6(a), a
simulation is carried out to form a circle with radius of 120 inches. The resulting
distribution is shown in Figure 6(b). The pair of robots at the upper-right corner cannot
see the two at the lower-left corner due to limited sensor range. In this case, the two
robots at the upper-right corner and the two in the middle form a circle. Similarly, the
two robots at the lower-left corner and the two in the middle form another circle.

Finally, it is noted that algorithm works the same way but much faster when it is
implemented without using any sleep mode (making the robots active or inactive at

unpredictable time instants).
B. MODIFIED CIRCLE ALGORITHM.

In this subsection, a modified circle algorithm is presented. The objective of the
modified algorithm is to yield a better approximation of circles, and to uniformly
distribute robots. The existing algorithm utilizes position information of the furthest and
closest robots. It is attempted to improve it by utilizing position information of one more
robot. More specifically, the stepsAof the modified algorithm are as follows. At each

iteration, robot R:

. Step 1.  Determines the furthest robot Ry, the closest robot R.;, and the
second closest robot R,».

e Step 2. ' Computes the coordinates of the centroid Pm Of Ry, Ry, and R,;.

e Step3. Moves to the point p, which is 7 distance away from Pm, on the line
that passes through its current position and p,,, where r is the desired radius of
a circle to be formed.
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Figure 7 shows the results of a simulation of the modified algorithm with a
desired circle of 28-inch radius.

Figure 7. Selected images of a simulation of the modified circle algorithm: (a) the
initial distribution, (b)-(e) intermediate steps, and (f) the final distribution of the
robots forming a circle.
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In step 3, while robot R tries to move towards or away from Pm 10 order to take its
position on p,, it is pushed by R, and R.,, which makes robot R move to the sides. An
advantage of the modified algorithm is that p,, is closer to the origin of the desired circle,
which makes the final formation a much better approximation of a circle. The radius of
the resulting circle is still smaller than the given radius (21 inches versus 28 inches).

Another advantage is that robots will be uniformly distributed along a circle,
independent of the number of robots. Nevertheless, it is observed that smaller number of

robots tend to form a smaller circle. Figure 8 shows the final results with five and four

robots.

Figure 8. Final distributions of the modified circle algorithm simulations with five
and four robots.
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V. MOVING IN FORMATION

In the previous chapters, the problem of formation was addressed. This chapter
discusses a rather different problem: moving in formation. Starting from an initial
formation, the problem of moving in formation is concerned with how to move robots
from an initial location to a final goal location while maintaining the formation and
avoiding obstacles. If the initial formation cannot be maintained due to obstacles, robots

must stay in a formation as close as possible to the initial one.
A. ASSUMPTIONS

Additional assumptions made for this section are :

o There is a global coordinate system, and the final goal location is passed to
each robot.

e There is a bulletin board that can be reached by all the robots. Each robot is
assigned a specific location in the bulletin board and each robot writes its
position information always into its assigned location.

B. IMPLEMENTATION

Three robots are used in implementation in this section as Nserver does not show
100 percent reliability with larger number of robots in implementation of the bulletin
board communication scheme. "Leader-Follower" technique is chosen for formation
position determination. In this technique, each robot determines its formation position
relative to the leader robot. The leader simply moves towards the final goal location
independently while other robots try to maintain their positions in the formation relative
to the leader. The robots are all identical and the leader is not appointed, but it is selected
by the robots at run time.

At their initial locations, the robots only know the final goal location. Each one
writes its current position information into its assigned location in the bulletin board.

Then it calculates the distances of all robots from the final goal location, based on the
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position information it reads from the other robots' assigned locations in the bulletin
board. The closest one to the final goal location is selected as the leader. The location
number in the bulletin board which consists of the position information of this robot is
memorized by all robots; they know where the leader's position information is available.
Once the leader is selected, only the leader keeps writing its position to the bulletin board
in every iteration. The other robots do not need to do it as their position information do
not need to be known by any others.

Each robot determines its position relative to the leader and remembers it
throughout the whole journey. The first movement for all the robots is to turn their faces
towards the final goal location. This is to find out which side is the leader located. Each
follower robot needs to know if it is on the left or on the right side of the formation as to
the direction of motion. For instance, if a.robot sees the leader on its right side initially,
then it will move towards the formation's main body by leaving the obstacle on his left
when avoiding collisions. If the leader is initially on its left, then it will leave the obstacle
on its right and move towards the formation's main body when avoiding obstacles.

The leader moves towards the given final goal location independently, while
avoiding any collision based on the potential field method. Each of the other robots
determines a new goal location for itself at each iteration based on the curfent position of
the leader and moves to this point while avoiding any collision, again based on the
potential field method. The follower robots move slightly faster than the leader in order
to catch it and maintain the formation. The further the follower robot is from its goal
location at each iteration, the faster it moves. This is very crucial because the followers
stay behind when avoiding collisions with obstacles while the leader keeps moving.

It can be explained better using Figure 9 which shows the simulation results from
an initial to a final distribution. The final location for the robots in F igure 9(a) is given to
be a point which is further on the right side of the area shown. The robots concur with
the leader, they face towards the final goal point, the followers find out which side is the
leader located, and determine their positions relative to the leader. Then, the leader starts

moving towards the final goal point while the others start following it. Since the robot on

32




the very right in Figure 9(a) is the closest one to the final destination, it will be the leader.
(Let's denote the leader as R;, the robot on the top side as Ry, and the robot on the bottorﬁ
side as Rp),

In Figure 9(b), Ry comes across an obstacle. After having a very slow speed (2
inches/sec. in simulations) two successive times although it is away from its goal
location, it realizes that it is stuck and turns towards the main body of the formation and
leaves the obstacle on its left. Then it keeps moving while keeping the obstacle on its left
hand side. This makes the robot follow the edge of the obstacle and turn around the
comer of the obstacle. As soon as. Ry realizes that it moved towards the final goal
location more than 10 inches in one iteration, it goes back to the normal flow of the
program, determines a new goal position for itself relative to the current position of the
leader, and starts moving. The new goal location may cause the robot to immediately
experience another local minimum, especially if the avoided obstacle is a big one, which
makes the robot go to the same process one more time.

The follower robots move faster when they are avoiding an obstacle. Otherwise
they would stay very much behind the leader. R, avoids obstacles always by leaving them
on its right and moving left as to the direction of general motion of the formation, as
appeared on Figure 9 (c) and (d). Rz avoids the obstacles by leaving them on its right and
moving towards the main body of the formation as shown on Figure 9 (h) and (i).
Moving to the opposite direction would cause the follower robots go further away from
the formation, which in turn makes it difficult to catch.

The bulletin board scheme is implemented by using a built in function called
get_rpx() which is not specified in the language manual but included in Nclient.h and
Nclient.o files. This function uses the UNIX sockets to communicate with the server and
get the position information of all the nearby robots. It has been a little bit difficult to
figure out how exactly it worked as it was not stated in the language manual. Therefore,
it is believed to be useful to include it here, in order to ease the understanding of the

source code.
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Figure 9. Selected images of the simulation of the moving in formation algorithm
from an initial distribution to a final stage. (a) the initial distribution, the robot on

the very right is selected to be the leader, (b)-(f) and (g)-(k) on the next page are
intermediate steps,
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Figure 9. Continued. Leader moves independently towards the final goal location
while others try to maintain their positions relative to the leader while avoiding
obstacles, and (]) the distribution of the robots after avoiding all the obstacles and
shortly before arriving the final goal location. Three identical small circles
represent the robots, while big polygons represent obstacles.
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A pointer is passed to the function which in return points to the position
information of the nearby robots. The first value in the returned array (pos_array[0])
specifies the number of robots around. Each following group of three values in the array
returns information about a robot. The first ones in each group of three (pos_array[l],
pos_array[4], pos_array[7], etc.) specifies the robot's ID number. The following two
values in each group contain the x and y coordinates of that robot (1.e. pos_array[2],
pos_array[5], pos_array[8] contain the x-coordinate, and pos_array[3], pos_array[6],
pos_array[9] contain the y-coordinate of the robot whose number is specified in
pos_array[l1], pos_array[4], pos_array[7] respectively). The x and y coordinates of
each robot are presented relative to the robot itself in the world coordinate system. For
instance, if the robot who is calling this function is located at x=100, y=50 in the world
coordinate system, and if there is only one robot around whose ID number is 5 and who is
located at x=350, y=200 in the world coordinate system, then the function returns the
following values: rob_pos[0]=1, rob_pos[1]=5, rob_pos[2]=250, rob _pos[3]=150.

The function get_rpx() does not return any information about the robots that are
not in the sensor range or are completely behind an obstacle. If a follower robot cannot
get the position information of the leader in such cases, which is encountered
occasionally, it simply moves towards the final goal position with a higher speed until it
gets the position information of the leader again. 4

Any robot can turn backwards while avoiding a collision or trying to maintain its
position and carry on moving backwards later on as it happens to the leader on F igure 9
(g) and (h). This is a natural result of using physical robots, and it does not affect the
flow of the motion at all. Robots repeat the motion sequences as appeared in the rest of
the Figure 9 and maintain the initial formation as much as possible while avoiding

obstacles on the way to the specified final goal configuration.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Line and circle formation of distributed mobile robots was studied. Motion
control and collision avoidance were achieved by implementing a potential field
algorithm. It was observed that existing line and circle formation algorithms do not work
well when implemented with realistic robots. Modified line and circle algorithms were
developed and verified through simulation. As demonstrated, the proposed algorithms
not only achieve the goal of forming a line or a circle, but they also uniformly distribute
robots on a line segment or circle. Behaviors for formation maintenance in a small group
of physical mobile robots was also studied. An algorithm based on “Leader-Follower”
technique was implemented for relative positional maintenance to help robots move to a
specified goal location in formation while avoiding collisions with obstacles and other
robots.

Follow-on work on the line and circle formation problems should focus on
improving the convergence rate of formation and incorporating obstacles (other than
robots themselves) in workspace. Studies on the moving-in-formation problem, on the
other hand, should focus on implementing a means of implicit communication in which

robots rely entirely upon their own perceptions of the world.
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APPENDIX A. SOURCE CODE FOR MODIFIED LINE ALGORITHM

/* This is the source code of the modified line algorithm presented in
chapter III. Some command line arguments must be passed to the program
in order to run it. The first argument is the ID number of the robot
that will be used to connect to the server, which is compulsory. Second
and third arguments are the desired initial x and y coordinates of the
robot, and these are optional. If the current position of the robot is
desired to be the initial configuration, then no x-y coordinates need to
be entered. So, there are two ways to run the program.

1. Filename ID x y

2. Filename ID
One copy of this program must be run for each robot with a different ID
numbers. Nserver allows to simulate up to six robots, hence the robot
ID number should be between 1 and 6. */

#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PI 3.1415926

/* Function Prototypes */
void GetSensorData (void);
void Movement (void) ;

int sign(int);

void calculate() :

/* Global Variables */

double fused range[l6]; /* Array to store the fused sensor readings */

int BumperHit = 0; /* boolean value */

long robot config([4]; /* the current robot configuration(x, vy,
steering angle, turret angle) x and y are in
tenth of inches, and angles are in tenth of
degrees */

double F att(2], F rep[2], F tol[2] ; /*Arrays to store the attractive,
_ repulsive and total forces. */

double preXgoal, preYgoal ;

int minreturn, maxreturn, iteration ;

long mindist, maxdist ;

int count = 0 ;

/*** Main Program ***/
main (unsigned int argc, char* argv(])
{

int 1i,index;

int order[16];

int Robot ID = atoi(argv(1l]);
int X,Y;
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/* Check the command line arguments. There should be either one or
three command line arguments */
if (argc!=4) {
if (argc!=2) {
printf ("please enter 3 parameters besides the command\n");
exit ();
}
}

/* Check the robot ID, IT should be between 1 and 6 */
if | (Robot_ID(l) ]« Robot~ID>6) Y|

printf ("Robot ID must be between 1 and 6 ");

exit();

}

/* Connect to Nserver.*/
SERV_TCP_PORT=7771 ;
strcpy(ROBOT_MACHINE_NAME, "nomad") ;
connect_robet(RobotwlD);

/* If the initial X~y coordinates are entered, store them into
variables*/
if (argec==4) {
X = atoi(argv(2]);
Y = atoi(argv(3]);
place_robot (X,Y,0,0);
}

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */

init mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if it becomes disconnected. */
conf tm(5);

/* Sonar setup: configure the order in which individual sonar units
fire. In this case, fire all units in counter-clockwise order (units

are numbered counter-clockwise starting with the front sonar as zero) .

The conf sn() function takes an integer and an array of at most 16
integers. If less than 16 units are to be used, the list must be

terminated by an element of value -1. The single integer value passed

controls the time delay between units in multiples of four
milliseconds. */
for (i = 0; 1 < 16; i+4)
order(i] = 1i;.
conf sn(l,order);

/* Configure the Infrared Sensors */
for (i = 0; i < 16; i++)
order[i] = i;
conf_ir(1l,order);
/* Fortunately, the robot can talk... */
tk("Start to form a line");
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}

iteration = 0 ;

/* Main loop. Execute unless a collision occurs. */
while (!BumperHit)
{
GetSensorData();
Movement () ;

}

/* Disconnect. */
disconnect_robot (Robot ID);

/******************************/

/* Movement (). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */
void Movement (void)

{

/* Variables */

int i;

int panic,flip ;

int tvel, svel ;

double gain_tvel = 0.07; /* Translational velocity gain */
double gain svel = 100.0; /* Rotational velocity gain */

/* Compute the attractive force and the repulsive force in the robot
coordinates by using function calculate() */
calculate() ;

/* Set the translational velocity */
tvel = (int) (gain tvel * F tol[0]);

/* Set the rotational velocity. If both minimum and maximum sensor
readings are 255 which is the maximum sonar range, it means there is
no contact around. Then proceed by turning 5 degrees in each
iteration, so that robot will be able to cover the area by making a
big circle. Otherwise set the rotational velocity based on the total
forces acting on robot. */

if (mindist==255 && maxdist==255)
svel = 50 ;

else .

svel = (int) (gain_svel * sin(atan2(F tol[1l],F tol{0])));

/* Set the direction of rotation;left or right. */
svel = svel * sign( (int) (F _tol([0]) );

/* limit the translational and rotational velocities. Maximum allowed
translational velocity is 24 in/sec, and rotational velocity is 45
degrees. */
if (abs(tvel) > 240)

tvel = 240 * sign(tvel);

if (abs{svel) > 450)
svel = 450 * sign(svel) ;
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/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This velocity
can be between -240 and 240. The second parameter is the steering
velocity, and the third is the turret velocity. The units of the
latter two are tenths of a degree per second, and can be between -450
and 450. The same value is given for these two so that the turret is -
always facing the direction of motion. */

vm(tvel, svel, svel);

}

/*******************************/

/* This function reads sensor data and loads them into arrays. */
void GetSensorData (void)

{

int i ;

long SonarRange[16] ; /* Array to store sonar readings */
long IRRange[16] ; /* Array to store infrared readings */
double corrected IR[16] ; /* Array to store correlated infrared

readings */

double corrected_sonar([16] ;/* Array to store the corrected sonar
readings */

double norm[16] ;

/* Read all sensors and load data into State array. */
gs();

/* Read State array data and put readings into individual arrays. */
for (i = 0; 1 < 16; i++) {
/* Sonar ranges are given in inches, and can be between 6 and 255,
inclusive. */
SonarRange[i] = State[l17+i];

/* IR readings are between 0 and 15, inclusive. This value is
inversely proportional to the light reflected by the detected
object, and is thus proportional to the distance of the object.
Due to the many environmental variables effecting the reflectance
of infrared light, distances cannot be accurately ascribed to the
IR readings. */ :
TRRange[i] = State[1+i];

}

/* To correlate the infrared reading to physical distance. The
numbers are obtained by least square linear regression of measurement
data. */

for (i = 0; i < 16; i++)

corrected IR[i] = 2.2508 = ((double) IRRange[i] + 0.8602);

for (i = 0; 1 < 16; i++)
corrected sonar([i] = (double) SonarRange[i]; /*From long to double*/

/* Fuse the sonar and IR data, and store the final sensor reading into
the global array fused range([]. Infrared readings are not reliable
beyond 14 inches. If the correlated value is smaller than 14, then
normalize and fuse the infrared and sonar data. If it is more than

14, then consider the sonar data. */
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}

for (i = 0; i < 16; i++) {
if (IRRange[i] <= 14)
{

norm[i] = corrected sonar[i]*corrected sonar[i] +
corrected IR[i]*corrected IR[i];
fused range[i] = (corrected sonar[i]* corrected sonar[i]*

corrected IR[i] + corrected IR[i]*
corrected IR[i]* corrected sonar[i])/norm(i];
if (fused range[i] <= 5.0)
fused _range[i] = 0.0;
}
else
fused_range[i] = corrected sonar[i];

}

/* The robot configuration parameters (x, y, steering angle, and
turret angle) are stored in State[34], State[35], State[36], and
State[37). */
for (i = 0; 1 < 4; i++)

robot config[i] = State[34+i];

/* Check for bumper hit. If a bumper is activated, the corresponding
bit in State([33] will be turned on.Since we don't care which bumper is
hit, we thus only need to check if State[33] is greater than zero. */
if (State[33] > 0) {

BumperHit = 1;

tk("Ouch.");

printf ("Bumper hit!\n");
}

/* Find out the sensor ID number which detects the closest robot Rc */
minreturn = 0; .
for (i =1 ; i < 16 ; i++) {
if (fused range[i] < fused range[minreturn])
minreturn = i ;

}

/* The distance to the closest robot */
mindist = fused range[minreturn];

/*Find out the sensor ID number which detects the furthest robot Rf*/
maxreturn = minreturn ;
for (1 = 0 ; 1 < 16 ; i++) |
if((fused_range[i]>=fused_range[maxreturn})&&(fused_range[i}<255.0))
maxreturn = i;

}

/* The distance to the furthest robot */
maxdist = fused range[maxreturn];

/*******************************/

/* Sign function. It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)

{
}

return x>0?1:-1;
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/*******************************/

/* This function computes the attractive force as to the goal point in
robot coordinate system and the repulsive force as to the obstacles in
robot coordinate system. Finally it calculates the x and y components of
the total forces on the robot in robot coordinate system. */

void calculate()

{
double rho 0

40.0; /* Cut-off distance of the repulsive force */

double scale = 8.0 ; /* Scaling factor for attractive force */
double eta = 35000.0 ; /* Scaling factor for repulsive force */
double rho att = 40.0 ; /* Saturation distance for attractive

force to switch between parabolic-well and
conic-well */

double rho float ;

double teta;

double range = (2*rho 0) + (2*8.81) ; /* Minimum distance between
closest and furthest robot to
allow another robot to fit in.*/

int 1 ;

int signal = 0 ;

int flag

int set

int alone

I
[oNe N

double xx1,xx2,yyl,yy2 ;

double length, slope, dist, distance ;
double xgoal, ygoal ;

double ya,yb,xa,xb ;

/* The x and y coordinates of the closest robot */
xx1l ((double)mindist+17.62) *cos ( (double)minreturn*0.39) ;
yyl ((double)mindist+17.62) *sin((double)minreturn*0.39) ;

/* The x and y coordinates of the furthest rocbot */
Xx2 = ((double)maxdist+17.62) *cos ( (double)maxreturn*0.39)
yy2 ((double)maxdist+17.62) *sin( (double)maxreturn*0.39) ;

~

/* The distance between closest and furthest robots */
length = hypot ( (double) (yy2-yyl), (double) (xx2-xx1) );

/* Compute the coordinates of the point p, the foot of the perpendi-
cular drop from robot's current position to the line 1 passing through
Rc and Rf. Watch out the conditions that would lead to a division by
zero error. */ :
if ( xx1 == xx2 ) {
if (yyl == yy2) { /*Means there is only one contact around*/
dist = hypot ((double)xxl, (double)yyl) ;
printf ("dist= %$f\n", dist);

xgoal = xxl - (xxl*range/dist) ;
ygoal = yyl - (yyl*range/dist) ;
alone = 1 ;

}

else {
xgoal = xx1 ;
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ygoal = 0 ;
signal = 1 ;

}

}
else {
if (yyl==yy2) {
xgoal = 0 ;
ygoal = yyl ;
signal = 2 ;

}

else {
slope = (yy2-yyl)/(xx2-xx1) ;
xgoal = ( yyl-(slope*xxl)) / ({(-1/slope) - slope );
ygoal = (-1/slope)*xgoal ;
distance = hypot (xgoal, ygoal) ;
signal = 3 ;

/* Check to see if the point p is between Rc and Rf. If so, there is
enough room for a robot to fit in-between Rc and Rf. Then proceed
towards the mid-point. */

if (((xgoal>=xxl)&&(xgoal<=xx2)) || ( (xgoal<=xx1) &&(xgoal>=xx2))) {
if (((ygoal>=yyl) &&(ygoal<=yy2)) || ((ygoal<=yyl)&& (ygoal>=yy2))) {
set =1 ;
if (length >= range) {
xgoal = (xxl+xx2)/2.0 ;
ygoal = (yyl+yy2)/2.0 ;
flag = 1 ;
set =0 ;

}

/* If point p is not between Rc and Rf, or if there is not enough
room between Rc and Rf, then the final goal location is the point pd
on the line 1 which is d distance away from Rc in the opposite
direction of Rf, where d is the distance that would prevent any
repulsive force being applied to either robot. */
if (!flag) {
switch(signal) {
case 0 : break ;
case 1 : ygoal = sign(yyl)* (abs(yyl)-sign(yyl)*sign(yy2) *range)

break ;

case 2 : xgoal = sign(xxl)*(abs(xxl)-sign(xxl)*sign(xx2)*range)
break ;

case 3 : xa xxl + (range-rho 0)/sqgrt(l+slope*slope) ;

xb xx1l - (range-rho:O)/sqrt(l+slope*slope) ;
ya = yyl + slope* (xa-xxl) ;
yb = yyl + slope* (xb-xx1) ;
if ( (hypot(ya,xa)-~hypot(yb,xb))<=0.0 ) {
xgoal = xa ;
ygoal = ya ;
}
else
xgoal = xb ;
ygoal = yb ;
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}
break ;
default: break ;
}
}
/* If point p is between Rc and Rf but there is not enough room for
between Rc and Rf, proceeding directly to pd mostly results in local
minima when the direct route to pd is within the repulsive force
range of Rc. To avoid this problem, send the robot to an intermediate
point which is d distance away from Rc, on the line that is
perpendicular to 1 at Rc. As soon as the robot passes this point, in
the next iteration pm will not be between Rc and Rf and robot will be
sent to pd. */
if (set && l!alone) {
ya = yyl + {range-rho_0) /sqrt (1+slope*slope) ;
yb = yyl - (range-rho 0) /sqgrt(l+slope*slope) ;
xa = xxl + slope*(yyl-ya) ;
xb = xx1 + slope*(yyl-yb) ;
printf("ya,yb, loop executed\n");
if ( (hypot (ya,xa)-hypot (yb,xb))<=0 ) {
xgoal = xa ;
ygoal = ya ;
}

else {
Xgoal = xb ;
ygoal = yb ;

}

/* If Rc and Rf are seen by two consecutive sensors and the
difference between the sensor readings are less than 4 inches, then
there is only one contact around that is seen by two sensors. This
happens when the endpoint robots are moving to their positions,
after a certain point the robot cannot see the other robots. In this
case use the last goal values three times to send the robot to its
correct position, in order to form a straight line. Then simply send
the robot to the d distance away from the only detected robot. */
if ((abs(minreturn-maxreturn)== ) || (abs (minreturn-maxreturn)==15)) {
if ( abs(mindist-maxdist)<=4 ) {
if (count < 3 ) {

xgoal = preXgoal ;

ygoal = preYgoal ;

count += 1 ;

}

else {
dist = hypot ((double)xxl, (double)yyl) ;
xgoal = xx1 - (xxl*range/dist) ;
ygoal = yyl - (yyl*range/dist) ;

count = Q0 ;

}
}

distance = hypot (xgoal,ygoal); /*distance to the goal configuration*/
/* Store the goal configuration to remember in the next iteration */

preXgoal = xgoal ;
preYgoal = ygoal ;
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/* Compute the attractive force in the robot coordinate system */

if (distance <= rho_att) { /* Parabolic Well */
F att[0] = scale*xgoal ;
F att{l] = scale*ygoal ;

}

else { /* Conic Well */
F att[0] scale*rho_att*(xgoal/distance) ;
F att[l] = scale*rho_att*(ygoal/distance) ;
printf ("distance2= %f \n", distance);

}

/* Compute the repulsive force in the robot coordinate system */
F rep[0] = 0.0;
F rep[1] 0.0;

for (1 = 0; i <= 15; i++)
{
rho float = (double) (fused range[i]):;

if (rho_float < rho_0) {

F rep[0] += -eta*(1.0/rho_float - 1.0/rho_0)*cos((double) (i) *
0.392699)/(rho _float);
F rep[l] += =-eta*(1.0/rho_float - 1.0/rho_0)*sin((double) (i) *

0.392699) /(rho_float);

}
}

/* compute the total force in the robot coordinates */
F tol[0] = F att([0] + F_rep{0];
F tol[l] = F_att[l] + F_rep[l];
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APPENDIX B. SOURCE CODE FOR MODIFIED CIRCLE ALGORITHM

/* This is the source code of the modified circle algorithm presented
in chapter 1IV. Some command line arguments must be passed to the
program in order to run it. The first argument is the ID number of the
robot that will be used to connect to the server, which is compulsory.
Second and third arguments are the desired initial x and y ccordinates
of the robot, and these are optional. If the current ©position of the
robot is desired to be the initial configuration, then no x-y
coordinates need to be entered. So, there are two ways to run the
program.

1. Filename ID x y

2. Filename ID
One copy of this program must be run for each robot with a different ID
numbers. Nserver allows to. simulate up to six robots, hence the robot
ID number should be between 1 and 6. */

#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PI 3.1415926

/* Function Prototypes */
void GetSensorData (void):;
void Movement (void) ;

int sign{int);

void calculate() ;

/* Global Variables */

long SonarRange[16]; /* array of sonar readings (inches) */

long IRRange[l16]; /* array of infrared readings (no units)*/
double fused range[l6]; /* Array to store the fused sensor readings */
int BumperHit = 0; /* boolean value */

long robot configl4]; /* the current robot configuration (x, y,

steering angle, turret angle) x and y are in
tenth of inches, and angles are in tenth of
degrees */
double radius = 28.0 ;
double F att[2], F rep[2], F tol[2]; /*Arrays to store the attractive,
repulsive and total forces. */
int minreturn, maxreturn, minreturn2 ;
int count = 0 ;
long mindist, mindist2 ,maxdist; /* Variables to store the distances
of closest, second closest and
furthest robots */

/*** Main Program ***/

main (unsigned int argc, char* argv[])
{

int i, index;

int order([16];

int Robot ID = atoi(argv(l]):

int X,Y;
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/* Check the command line arguments. There should be either one or
three command line arguments */
if (argc!=4) {

if (argci=2) {
printf ("please enter 3 parameters besides the command\n");
exit();

1
}

/* Check the robot ID, It should be between 1 and § */
if ( (Robot_ID<1) || ( Robot ID>6) ) {

printf ("Robot ID must be between 1 and 6 "y,

exit ();

}

/* Connect to Nserver.*/
SERV_TCP_PORT=7771 ;

strcpy (ROBOT_MACHINE NAME, "nomad");
connect_robot (Robot ID);

/* If the initial x-y coordinates are entered, store them into
variables. */
if (argc==4) {
X = atoi(argv[2]);
Y = atoi(argv([3]);
place robot (X,Y,0,0);
}

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */

init _mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if it becomes disconnected. */
conf tm(5);

/* Sonar setup: configure the order in which individual sonar units
fire. In this case, fire all units in counter-clockwise order (units
are numbered counter-clockwise starting with the front sonar as Zero) .
The conf_sn() function takes an integer and an array of at most 16
integers. If less than 16 units are to be used, the list must be
terminated by a element of value -1. The single integer value passed
controls the time delay between units in multiples of four msec. */
for (i = 0; 1 < 16; i++)

order[i] = i;

conf sn(l,order);
/* Configure the Infrared Sensors */
for (i = 0; 1 < 16; i++)
order[i] = 1i;
conf_ir(1,order);
/* Fortunately, the robot can talk... */

tk("Let’s form a circle guys");
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/* Main loop. Execute unless a collision occurs. */
while (!BumperHit)
{
GetSensorData();
Movement () ;

}

/* Disconnect. */

vm(0,0,0) ;

disconnect_robot (Robot ID);
}

/******************************/

/* Movement (). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */

void Movement (void)
{
/* Variables */
int i;
int panic;
int tvel, svel;

double gain_tvel 0.07; /* Translational velocity gain */
double gain svel = 100.0; /* Rotational wvelocity gain */

/* Compute the attractive force and the repulsive force in the robot
coordinates by using function calculate() */

calculate() ;

/* set the translational velocity */
tvel = (int) (gain_tvel * F_tol[0]);

/* Set the rotational velocity. If both minimum and maximum sensor
readings are 255 which is the maximum sonar range, it means there is
no contact around. Then proceed by turning 5 degrees in each
iteration, so that robot will be able to cover the area by making a
big circle. Otherwise set the rotational velocity based on the total
forces acting on robot.*/

if (mindist==255 && maxdist==255) {
svel = 50 ;
tvel = 100 ;
}
else {
if ((F_tol[0]==0)&&(F_tol[1]==0))
svel = 0 ;
else if ( F_tol[0]==0 )
svel = 450 ;
else
svel

(int) (gain_svel * sin(atan2(F_tol([1l],F _tol[0]})));
}

svel = svel * sign( (int) (F_tol[O0]) );
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/* limit the translational and rotational velocities. Maximum allowed
translational velocity is 24 in/sec, and rotational velocity is 45
degrees/sec */
if (abs(tvel) > 240)

tvel = 240 * sign(tvel);

if (abs(svel) > 450)
svel = 450 * sign(svel) ;

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This velocity
can be between -240 and 240. The second parameter is the steering
velocity, and the third is the turret velocity. The units of the
latter two are tenths of a degree per second, and can be between -450
and 450. The same value is given for these two so that the turret is
always facing the direction of motion. */
vm(tvel, svel, svel);

}

/*******************************/

/* This function reads sensor data and loads them into arrays. */
void GetSensorData (void)
{
int i, value , samel, same2 ;
double corrected IR[16] ; /*Array to store correlated infrared
readings. */
double corrected_sonar(16]; /* Array to store the corrected sonar
readings */
double norm[1l6] ;
int min_above, min below ;

/* Read all sensors and load data into State array. */
gs();

/* Read State array data and put readings into individual arrays. */
for (i = 0; 1 < 16; i++) :
{
/* Sonar ranges are given in inches, and can be between 6 and 255,
inclusive. */
SonarRange[i] = State[17+i];

/* IR readings are between 0 and 15, inclusive. This value is
inversely proportional to the light reflected by the detected
object, and is thus proportional to the distance of the object.
Due to the many environmental variables effecting the reflectance
of infrared light, distances cannot be accurately ascribed to the
IR readings. */
IRRange{i] = State[1l+i];

}

/* To correlate the infrared reading to physical distance. The numbers
are obtained by least square linear regression of measurement data. */
for (i = 0; 1 < 16; i++)

corrected_IR[i] = 2.2508 * ((double) IRRange[i] + 0.8602);

for (i = 0; 1 < 16; i++)
corrected_sonar[i] = (double) SonarRangef{i];
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/* Fuse the sonar and IR data, and store the final sensor reading into
the global array fused range[]. Infrared readings are not reliable
beyond 14 inches. If the correlated value is smaller than 14, then
normalize and fuse the infrared and sonar data. If it is more than
14, then consider the sonar data. */
for (i = 0; 1 < 16; i++) {

if (IRRange[i] <= 14)

{

norm{i] = corrected_sonar[i] *corrected sonar([i]+
corrected_IR[i]*corrected IR[1];
fused range[i] = (corrected sonar[i]*corrected sonar[i]*

corrected IR[i]+corrected IR[i]*
corrected_IR[i]*corrected sonar(i])/norm[i];
if (fused range[i] <= 5.0)
fused range[i] = 0.0;
}
else
fused_range[i] = corrected sonar([i];

}

/* The robot configuration parameters (x, y, steering angle, and
turret angle) are stored in State[34], State[35], State[36], and
State[37]. */
for (i = 0; 1 < 4; i++)

robot config[i] = State[34+i];

/*Check for bumper hit.If a bumper is activated, the corresponding bit
in State{33] will be turned on. Since we don't care which bumper is
hit, we thus only need to check if State[33] is greater than zero.*/

if (State[33] > 0)
{
BumperHit = 1;
tk("Ouch.");
printf ("Bumper hit!\n");
}

/* Find out the sensor ID number which detects the closest robot */
minreturn = 0;
for (i =1 ; 1 < 16 ; i++) {
if (fused_range([i] < fused_range[minreturn])
minreturn = i ;

}

/* The distance to the closest robot */
mindist = fused range[minreturn];

/* Find out the sensor ID number which detects the furthest robot */
maxreturn = minreturn ;
for (i =0 ; 1 < 16 ; i++) {
if((fusedﬁrange[i]>=fused_range{maxreturn])&&(fused_range[i]<255.0))
maxreturn = i;

}

/* The distance to the furthest robot */
maxdist = fused range[maxreturn];
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/* ID numbers of sensors that are next to the one which sees the
closest robot */
min_above = minreturn+l ;
if ( min_ above==16)
min_above=0 ;

min_below = minreturn-1 ;
if ( min_below==-1)
min _below==15;

/* Check if the neighbor sensors see the same robot. If so, set the
corresponding flag */

samel = 0 ;

same2 = 0 ;

if | abs (fused range[minreturn] - fused range[min_above]) <=4 )
samel = 1 ;

if ( abs(fused range[minreturn] - fused_range[min below]) <=4 )
same2 = 1 ;

/*Find out the sensor ID number which sees the second closest robot*/
minreturn2 = maxreturn ;
for (i =0 ; i < 16 ; i++) {
if(i!=minreturn)
if (fused range[i] < fused range[minreturn2]) {

if( (samel==1) && (i==min_above) )
printf("min_above == minreturn \n") ;
else if( (same2==1) && (i==min _below) )
printf ("min below == minreturn \n") ;
else
minreturn2 = i ;

}

/* The distance of the second closest robot */
mindist2 = fused range[minreturn2] ;

}

/*******************************/

/* Sign function. It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)

return x>07?1:-1;

}

/************************:ﬁ-******/

/* This function computes the attractive force as to the destination
point in Robot Coordinate system and the repulsive force as to the
obstacles in robot coordinate system. Finally it calculates the x and y
components of the total forces on the robot again in robot coordinate
system. */

void calculate() {
double rho 0 = 15.0; /* Cut-off distance of the repulsive force */
double scale = 8.0 ; /* Scaling factor for attractive force */
double eta = 35000.0 ; /* Scaling factor for repulsive force */
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double rho_att 15.0

double rho float ;
double range
int i ;

rho 0 + (2*8.

/* Saturation distance for attractive
force to switch between parabolic-well and
conic-well */

81) ;

double xx1,xx2,yyl,yy2, xxb, yyb ;
double length, distance ,min_max;
double xgoal, ygoal, xM, yM ;

double teta, alpha,
int signal 0 ;

/* The coordinates of the
xx1 (double) (mindist+17.
yyl (double) (mindist+17.

/* The coordinates of the

Csquare ;

closest robot */
62)*cos ({(double)minreturn*0.39) ;
62)*sin((double)minreturn*0.39) ;

second closest robot */

xXxXb =
yyb

(double) (mindist2+17.62) *cos ( (double)minreturn2*0.39) ;
(double) (mindist2+17.62)*sin((double)minreturn2*0.39) ;

/* The coordinates of the furthest robot */

XX2
yy2

(double) (maxdist+17.62) *cos ((double)maxreturn*0.39) ;
(double) (maxdist+17.62) *sin{(double)maxreturn*0.39) ;

/* The distance between the furthest and the closest robots */

min_max

hypot ( (yy2-yyl), (xx2-xx1))

.
’

/* Check to see if there is only one contact around -Two consecutive
sensors can return two different range values, although they both see

the same robot- If there is only one robot detected,

*/
if ((abs(minreturn-maxreturn)==1)
(minreturn==maxreturn) ) {

if ( abs(mindist-maxdist)<=4 )

I

Csquare (mindist*mindist)

rotate around it.

(abs (minreturn-maxreturn)==15)

[l
{

+ (2*radius*2*radius)

(2*mindist*2*radius*cos(60.0*PI/180.0));

alpha= acos( (double) (
(2*radius*2*radius) )

(mindist*mindist)

+ Csquare -
(2.0*mindist*sqrt (Csquare))

/ )

xgoal= sqrt (Csquare) *cos( (double) (minreturn*0.39-alpha)) ;

ygoal= sqrt(Csquare)*sin{( (double) (minreturn*0.39-alpha)) ;
printf ("There is only one contact around \n");

(90.0*PI/180.0) ;

atan2 (fabs(ygoal), fabs (xgoal));

if ((ygoal==0)&& (xgoal==0))
teta = 0.0 ;

else if (xgoal==0)
teta =

else
teta =

signal =1 ;
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/* If there are more than one robot around */

if

}

(tsignal) {

/* Compute the coordinates of the mid-point of the triangle that
consists of the closest, second closest and the furthest robot at
the corners. If there are only two robots around, then consider only
the closest and furthest robot's coordinates. */

(abs (minreturn2-maxreturn)==1) ||

if ((minreturn2==maxreturn) || ((
=15)) && (abs(mindist2-maxdist)==2))){

(abs (minreturn2-maxreturn)=
xM=(xx1+xx2) /2.0 ;
yM=(yyl+yy2)/2.0 ;

}

else {
xM

yM

(xx1+xx2+xxb) /3.0 ;
(yyl+yy2+yyb) /3.0 ;

}

/* The distance from robot's current position to the middle point
between Rc, Rc2 and Rf */
length = hypot (xM, yM) ;

/*Compute the coordinates of the point which is r distance away from
the mid-point, where r is the desired radius of a circled to be
formed. */

if ((yM==0) && (xM==0))
teta = 0.0 ;
else if (xM==0)
teta = (90.0*PI1/180.0) ;
else
teta = atan2(fabs(yM), fabs(xM)):;

Xgoal = sign((int)xM) * (length-radius) * cos(teta) ;
ygoal = sign((int)yM) * (length-radius) * sin(teta) ;

distance = hypot (xgoal,ygoal); /*Distance to the goal configuration*/

/* Compute the attractive force in the robot coordinate system */
if (distance <=.rho att) {

F_att[0] = scale*xgoal ;

F_att[l] = scale*ygoal ;

}

else {
F_att[0] = scale*rho att*(xgoal/distance) ; -
F att[1l] = scale*rho att*(ygoal/distance) ; ’

}

/* Compute the repulsive force in the robot coordinates */

F rep[0]
F rep(1]

0.0;
0.0;

o

for (i = 0; i <= 15; i++){

rho_float = (double) (fused range[i]);
if (rho float < rho 0){

F rep[0] += —etaI(l.O/rho_float - 1.0/rho_0)*cos((double) (i) *
0.392699)/(rho_float);
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F_rep[l] += -eta*(1.0/rho_float - 1.0/rho 0)*sin{((double) (i) *
0.392699)/(rho_float);

}

/* compute the total force in the robot coordinates */
F_tol[0] = F att{0] + F rep[0];
F tol[l] = F_ att[l] + F rep[l]:;
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APPENDIX C. SOURCE CODE FOR MOVING IN FORMATION ALGORITHM

/* This is the source code of the moving in formation algorithm
presented in chapter V. The ID number of the robot must be passed to
the program as the first command line argument. The initial formation
should be formed manually. The x and y coordinates of the goal point
must be passed to each robot as the second and third command 1line
arguments respectively. The same goal configuration must be passed to
all robots. One copy of this program must be run for each robot with a
different ID number. Nserver allows to simulate up to six robots, hence
the robot ID number should be between 1 and 6. Only three robots are
used in this simulation, as the Nserver does not show 100% reliability
in the implementation of bulletin board communication scheme with more
than three robots. */

#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PI 3.1415926
#define TRUE 1
#define FALSE 0

/*** Function Prototypes ***/

void GetSensorData(void);
void Move Leader (void) ;
void Move Follower (void);
int sign(int);

/*** Global Variables ***/

double fused range{l16]; /* fused range data */

int BumperHit = 0; /* boolean value */

long robot configl[4]; /* the current robot configuration (x, vy,
steering angle, turret angle) x and y are in
tenth of inches, and angles are in tenth of
degrees */

long old rob configl2] ;

long x_cooxd(7], y cooxd[7] ;

double xgoal world, ygoal world, m, d ;

double Dold goal[2] ;

int Robot ID, leader ID, signal, stuck, count, count2, first ;

int left, minreturn

int robots([6] ;

double old dist ;

/*** Main Program ***/

main (unsigned int argc, char* argv([])
{
int j,i,leader,svel ;
int order[16];
double dist_arrayl[7] ;
double x_leader_rob, y leader rob, xgoal rob, ygoal rob, alpha ;
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double xg_lw,yg_1w,xg 2w,yg 2w ;
double gain svel = 150.0 ;

/*Store the x-y coordinates of the goal point into global variables*/
Robot ID = atoi(argv([1l]);

xgoal world = (double) atoi(argv[2]);

ygoal world (double) atoi(argv(3]);

/* Check the command line arguments. There should be three command
line argument */
if (argc!=2) {
printf("please enter one parameters besides the command\n") ;
exit ();

}

/* Check the robot ID, It should be between 1 and 6 */
if ( (Robot_ID<l) [T« Robot ID>6) ) {

printf ("Robot ID must be between 1 and 6 "),

exit(); ’

}

/* Connect to Nserver.*/
SERV_TCP_PORT=7771 ;
strcpy(ROBOT~MACHINE_NAME, "nomad") ;
connect_robot (Rokot ID);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */

init mask();

/* Configure timeout (given in seconds). This is how long the robot
will keep moving if it becomes disconnected. */
conf tm(5);

/* Sonar setup: configure the order in which individual sonar units
fire. In this case, fire all units in counter-clockwise order (units
are numbered counter-clockwise starting with the front sonar as zero).
The conf_sn() function takes an integer and an array of at most 16
integers. If less than 16 units are to be used, the list must be
terminated by a element of value -1. See the IR setup below for an
example of this. The single integer value passed controls the time
delay between units in multiples of four milliseconds. */
for (j = 0; j < 16; j++)

order(j] = j;

conf_sn(l,order);
/* Configure the Infrared Sensors */
for (j = 0; 3 < 16; j++)
order([j] = j;
conf_ir(l,order);
GetSensorData() ;
/* Find the distance of each robot from the goal point, and put them

in dist_array{] */
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for(i=0 ; i<signal ; i++)
dist_array[i] = hypot((xgoal world - (double) x coord[robots[il]),
(ygoal world - (double)y coord[robots[i]])) ;

/* Find the closest robot to the goal point. If two or more robot's
are exactly the same distance away from the goal, then choose the one
with smallest ID number. This will be the leader of formation. */

leader = 0 ;
for(i=1 ; i<signal ; i++) {
if(dist_array([i] < dist_array[leader])
leader = i ;
}
leader ID = robots[leader] ;

svel = 10 ;

/* Turn robot's face towards the goal point. The robot faces towards
the goal point if the rotational velocity is less than or equal to 2
degrees/sec. */

while (abs(svel) > 2){
GetSensorbata () ;
alpha = (double)robot config{2]*PI/1800.0 ;

/*Coordinates of the goal point in robot's local coordinate system*/
xgoal_rob = xgoal world*cos(alpha) + ygoal world*sin(alpha) -
(double) robot_config[0]*cos(alpha)-
(double) robot config[l]}*sin(alpha) ;

ygoal rob = -xgoal world*sin(alpha) + ygoal world* cos(alpha) +
(double)robot config[0]*sin(alpha)-
(double) robot config([l]*cos(alpha) ;

svel = (int)(gain_svel*sin(atanZ(ygoal_rob,xgoal_rob)))';

if(abs(svel)>450)
svel=450*sign(svel) ;
vm (0, svel, svel) ;

}

stuck
count
first
left ;

old_rob_config[0]
old rob configfl]

r
1
’

oo
O OO

0 ;
0 ;

o

if (leader_ID==Robot_ID) { /* If this robot is the leader */
st() i
sleep(2) ; /* Wait for two seconds for the other robots */

/* Execute the Move_Leader() function as long as there is no
collision */
while (!BumperHit) ({

Move Leader();

}
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else { /* If this robot is not the leader */

}

/* Compute the coordinates of the leader in robot's local

coordinate system */

%_leader _rob = x_coord[leader ID]*cos(alpha) +
y_coord[leader ID]*sin(alpha) -
(double) robot config[0]*cos(alpha) -
(double)robot config[l]*sin(alpha);

y_leader rob = -x_coord[leader ID]*sin(alpha) +
y_coord[leader ID]*cos(alpha)+
{double) robot config[0]*sin(alpha)-
(double) robot config[l]*cos(alpha);

/* Determine which side is the leader located : left or right. */

if((sign(x_leader_rob)*sign(y_leader rob))<0)

left = -1 ; /* Leader is on the right side as to the
direction of motion in formation*/

/* Slope of the line that passes through the leader and the robot

itself in world coordinate system. */

m = (double) (y_coord[leader ID] -
robot_config[l])/(double)(x_coord[leader_ID]—robot_config[O]);

/* Distance from the leader */
d = hypot ((double) (y_coord[leader ID] - robot config[l]),
(double) (x_coord{leader ID] - robot config[0]));

/* The coordinates of the goal point which is "d" distance away
from the leader's goal point on the line that has a slope of "m" -
in world coordinate system */

xg_lw = xgoal world + d/sqrt(1.0+m*m) ;

yg_lw = ygoal world + m*d/sqrt (l.0+m*m) ;
Xg_2w = xgoal world - d/sqrt(l.0+m*m) ;
yg_2w = ygoal world - m*d/sqrt(l.0+m*m) ;

/* Chose the closer one between these two points */

if | hypot((xg_lw-robot_config[O]),(yg_lw—robot_config[l])) <
hypot((xg_2w—robot_config[0]),(yg_2w—robot_config[l])) )

{

xgoal _world = xg lw ;
ygoal world = yg 1w ;
}
else

{

xgoal world Xg 2w ;
ygoal world = yg 2w ;
}

/* Execute the Move_ Follower () function as long as there is no
collision */

while (! BumperHit)

{
Move Follower();
}
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/* Disconnect. */
vm(0,0,0) ;
disconnect_robot (Robot_ID);

}

/******************************/

/* This function determines the movements of the leader. The leader
simply moves towards the given goal 1location independently, while
avoiding any collision based on the potential field method */

void Move_ Leader (void)
{
int i;
int tvel, svel;
double F att[2], F rep(2], F tol[2];
double gain tvel = 0.09; /* Translational velocity gain */
double gain svel = 150.0; /* Rotational velocity gain */

/* Compute the attractive force as to the destination point and the
repulsive force as to the obstacles in Robot Coordinate system .
Finally calculate the x and y components of the total forces on the
robot, again in robot coordinate system. */

double rho 0 = 15.0; /* Cut-off distance of the repulsive force */

double scale = 7.0 ; /* Scaling factor for attractive force */
double eta = 35000.0 ; /* Scaling factor for repulsive force */
double rho_att = 15.0; /* Saturation distance for attractive

force to switch between parabolic-well and
conic-well */
double rho float ;
double D_goal{2],X compl,X compZ2,X comp3 ;
double Y compl,Y comp2,Y comp3 ;
int dirdiff,panic ;
double distance,alpha ;
double xgoal, ygoal ;

GetSensorData()

/* Set the panic flag if there is any contact within 8 inches on the
direction of motion */

panic = FALSE;
for (i = 12; i <= 15; i++)

if (fused range[i] < 8 ) panic
for (i = 0; 1 <= 4; i++)

if (fused range{i] < 8 ) panic = TRUE;

I

TRUE;

if (!stuck) { /* If you are not stuck */

/* If the robot moves less than 2 inches two successive times
although it is away from its goal location, then set the stuck
flag */
if (hypot((double) (robot config[0]old rob config([0]),

(double) (robot config{l]-old rob_config[l]}))<= 2.0){

count++ ;
if (count==2) {
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f(old dist > 5.0) {
stuck = 1 ;
first =1 ;

}

count = 0 ;

}
}

/* Store the robot's position to remember in the next iteration */
old_rob _config[0] robot_config[0] ;
old rob config[1l] robot config[l] ;

alpha = (double)robot config[2]*PI/1800.0 ;

/* Coordinates of the goal point in robot's local coordinate

system */

xgoal = =xgoal world*cos(alpha) + ygoal _world*sin(alpha) -
(double) robot’ _config[0] *cos(alpha) -
(double)robot_conflg[l]*51n(alpha)

ygoal = -xgoal world*sin(alpha) + ygoal world*cos (alpha) +
(double)robot config[0]*sin(alpha)-
(double)robot_conflg[l]*cos(alpha) ;

[

distance hypot (xgoal,ygoal) ; /* Distance to the goal point */
old dist = distance ;

/* Compute the attractive force in the robot coordinate system */
if (distance <= rho _att) {

F_att[0] = scale*xgoal ;
F_att[l] = scale*ygoal ;
}
else {
F_att[0] = scale*rho _att*(xgoal/distance) ;
F_att[l] = scale*rho_att*(ygoal/distance) ;

}

/* Compute the repulsive force in the robot coordinate system */
F rep[0] = 0.0;
F rep[l] = 0.0;

for (i = 0; 1 <= 15; i++){
rho float = (double) (fused | range[il);
if (rho float < rho _0) {
F rep[O] += -eta*(1.0/rho float -1. 0/rho 0) *cos ( (double) (i) *
0.392699) / (rho _float);

F_rep[l] += -eta*(1.0/rho_float -1.0/rho 0)*sin{((double) (i)*
0.392699) / (rho_float) ;
}

}
/* compute the total force in the robot coordinate system */
F tol[0] = F_att[0] + F_rep[0];

F_tol[l] = F_att[l] + F _rep[l];

/* set the translational velocity */

tvel = (int) (gain_tvel * F tol[0]);
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}

/* set the rotational velocity */

if ((F_tol[0]==0)&&(F tol[1]==0))
svel = 0 ;
else if ( F_tol[0]==0 )
svel = 450 ;
else
svel = (int) (gain_svel * sin(atan2(F_tol[1l],F_tol[0])));

svel = svel * sign((int) (F_tol[0])):;

/* limit the translational and rotational velocities */
if (abs(tvel) > 240)
tvel = 240 * sign{(tvel);

if (abs(svel) > 450)
svel = 450 * sign(svel) ;

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these two so
that the turret is always facing the direction of motion. */

printf ("tvel=%d svel=%d \n",tvel,svel);
vm({tvel, svel,svel);

else /* If you are stuck */

{

D goal[0] (double) (xgoal_world-robot config([0]); /*x component */
D_goal[l] = (double) (ygoal world-robot config[l]); /*y component */

distance = hypot (D goal[0],D goal[l]) ;

/* 1f you entered this block for the first time, meaning that you
have just realized that you were stuck, make a 90 degree turn to
left as to the direction of motion, and leave the obstacle on your
right */

if ( first ){
dirdif£=200;
printf ("first\n");

while (! (abs(dirdiff)<100))
{
tvel=0;
svel=dirdiff/5;
vm(tvel, svel, svel);
GetSensorbata() ;

alpha ( (double)robot config[2])*PI/(1800.0);

xgoal = cos(alpha)*D _goal[0] + sin(alpha)*D_goal([l];

ygoal = -sin(alpha)*D_goal[0] + cos(alpha)*D goal(l];

dirdiff = (int) (atan2(ygoal,xgoal)*1800.0/PI) + 1100 ;

}

first=0; /* Reset the first flag */
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Dold goal{0]
Dold goal[l]

OO

]

[oNe]
~e ~o

}

if (!panic)

tvel = 10;
else
tvel = 0;

/* If the robot moves towards the final goal point more than 16
inches for 5 successive times, it means, it turned the corner of
the obstacle and started to move towards the direction of motion of
the formation. In this case reset the stuck flag. */

if ( distance < (hypot(Dold_goal[O],Dold_goal[l])—16.0)) {

count2++;
if (count2==5) {
stuck 0 ;

count2 = 0 ;
}

Dold_goal[O]=D~goal[O];
Dold*goal[l}=D_goal[l];

/* Watch the empty space on the direction of motion while following
the edge of the obstacle, and adjust the rotational velocity in
order to follow the edge and turn around the corner of the
obstacle. */

X _compl = (double)fused_range[lS] * cos(2.0%PI*15.0/16.0);
X _comp2 = (double) fused range[0] * cos(2.0*PI*0.0 /16.0);
X comp3 = (double) fused range[l] * cos(2.0*PI*1.0 /16.0);

if ((X_compl<15.0)i|(X_comp2<15.0)||(thomp3<15.0)){
svel 65*sign(left);
tvel 5;
stuck = 0 ;
count2 = 0 ;

o

}
else
svel=0;

/* Also watch out the distance from the obstacle while following
the edges. Try to keep the same distance from the obstacle by
adjusting the rotational velocity */

Y compl = (double)fused_range[l4] * sin(2.0*PI*2.0/16.0);

Y comp2 (double)fused_range[lB] * 5in(2.0*PI*3.0/16.0);

Y comp3 (double) fused_range([12] * sin(2.0*PI*4.0/16.0);

svel = svel - sign(left)* (int) (Y compl + Y comp2 + Y comp3 - 200.0);

if (abs(svel)<100)
svel=svel;

else
svel=svel*20/36;

if (stuck==0) {
tvel = 0 ;
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svel = 0 ;
}
if (panic==1)
svel = sign(left)*50 ;

vm(tvel, svel, svel);
} /* End else */
}

/**************************/

/* This function determines the movements of the follower robots. Each
follower robot determines a new goal location for itself at each
iteration based on the current position of the leader, and moves to this
point while avoiding any collision, based on the potential field method.

*/

void Move Follower (void)
{
int I, tvel, svel;
double F_att[2], F _rep(2], F _tol[2];

double gain tvel = 0.1; /* Translational velocity gain */
double gain svel = 150.0; /* Rotational velocity gain */

/* Compute the attractive force as to the destination point and the
repulsive force as to the obstacles in Robot Coordinate system.
Finally calculate the x and y components of the total forces on the
robot again in robot coordinate system. */

double rho 0 = 15.0; /* Cut-off distance of the repulsive force */
double scale = 7.0 ; /* Scaling factor for attractive force */
double eta = 35000.0 ; /* Scaling factor for repulsive force */
double rho_att = 15.0 ; /* Saturation distance for attractive force

to switch between parabolic-well and
conic-well */

double rho_float ;

double D _goal(2},X compl,X comp2,X comp3 ;

double Y compl,¥Y comp2,Y comp3 ;

int dirdiff, sonl,son2, son3,panic,panicl ;

int see_leader = 0 ;

double distance ;

double xgoal, ygoal;

double xg 1,yg 1, xg 2,y9 2 ;
double xg 1lw,yqg 1w, xg_2w,yg 2w ;
double teta ;

GetSensorData() ;

/* Set the panic flag if there is any contact within 8 inches on the
direction of motion */

panic = FALSE;
panicl FALSE ;

i

for (1 = 12; i <= 15; i++){
if (fused_range[i] < 8 )
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panic = TRUE;
else if (fused range[i] < 20)
panicl = TRUE ;
}
for (i = 0; 1 <= 4; i++) {
if (fused_range([i] < 8 )
panic = TRUE ;
else 1if (fused_range[i] < 20)
panicl = TRUE ;
}

if(!stuck) { /* If you are not stuck */

/* If the robot moves less than 3 inches two successive times
although it is away from its goal location, then set the stuck
flag */

if (hypot((double)(robot_config[O]-old_rob~config[0]),
(double) (robot config[1]—old_rob_config[l]))<=3.0 ) {
count++ ; -
if (count==2) {
if(old dist > 8.0) {
if(fused_range[minreturn]<(rho~0+l.0)){
stuck =1 ; '
first = 1 ;

old rob config[0]

_rob robot_config[0] ;
old_rob_config[1]

robot_config[l] ;

teta = (double)robot_config[2]*PI1/1800.0 ;

/* Check to see if you can get the position information of the
leader. Depending on the distance and the location of the leader,
sometimes it is not possible to reach the position information of
the leader, because of the implementation of get_rpx() function
in Nserver */

for(i=1 ; i<signal ; i++) {
if(robots[i]==leader_ID)
see_leader=l;

}

if(see leader) { /* If you can get the position information of
the leader */

/* The coordinates of the point which is "d" distance away from
the leader on the line that has a slope of ™" - in world
coordinate system. */

®g_1lw = x _coord[leader ID] + d/sqrt(l.0+m*m) ;
yg_1lw = y_coord[leader ID] + m*d/sqrt{l.0+m*m)

68




Xg_2w = x_coord[leader ID] - d/sqrt(l.0+m*m)
yg_2w = y coord[leader ID] - m*d/sqrt(l.0+m*m) ;

/* Convert the coordinates of these points into robot's local
coordinate system. */

xg_1 = xg_lw*cos(teta) + yg lw*sin(teta)-
(double)robot config[0]*cos(teta)-
(double)robot config[l]*sin(teta) ;

vg_1l = -xg_lw*sin(teta) + yg lw*cos(teta)+
(double) robot_config[0]*sin(teta)~-
(double) robot config[l]*cos(teta) ;

Xg_2 = xg 2w*cos(teta) + yg 2w*sin(teta)-
(double)robot config([0] *cos(teta)-
(double)robot config[l]*sin(teta) ;

yg_2 = -xg 2w*sin(teta) + yg 2w*cos(teta)+

(double)robot config{0]*sin(teta)~-
(double)robot config{l]*cos(teta) ;

/* Chose the closer one among these two points as the goal
configuration */

if ( hypot(xg_1l,yg_1l) < hypot(xg 2,yg 2) } {
xgoal = xg 1 ;
ygoal = yg 1 ;

}

else {

xgoal = xg 2 ;
ygoal = yg 2 ;
}
}
else { /* If you cannot get the position information of the
leader, move towards the final goal location faster
than the formation speed. */
if (!panicl)
gain_tvel = 0.15 ;

gain svel = 250 ;

/* Coordinates of the final goal point in robot's local
coordinate system */

xgoal = xgoal_world*cos(teta) + ygoal world*sin(teta) -
(double) robot _config{0]*cos(teta)~-
. (double)robot config[l]*sin(teta) ;

ygoal = -xgoal world*sin{teta) + ygoal world*cos(teta) +
(double) robot config{0]*sin(teta)-
(double) robot_config[l]*cos(teta) ;

}

distance
old dist

hypot (xgoal, ygoal) ; /* Distance to the goal point */
distance ;

([

/* Compute the attractive force in the robot coordinate system */
if (distance <= rho_att) {
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F att[0] scale*xgoal ;

F att[1] scale*ygoal ;

}

else {
F_att[0] = scale*rho att* (xgoal/distance) ;
F_att[l] = scale*rho att*(ygoal/distance) ;

}

/*Increase the translational velcity gain to speed up the robot*/
if (see_leader)
if (distance > (3*rho_0))
if (!panicl)
gain_tvel = 0.15 ;

/* Compute the repulsive force in the robot coordinates */
F rep(0] = 0.0;
F rep[1] 0.0;

for (1 = 0; 1 <= 15; i++){
rho_float = (double) (fused range[i]);
if (rho float < rho_0}){
F_rep[0] += -eta*(1.0/rho_float -1.0/rho_0)*cos((double) (i) *
O.392699)/(rho_float);
F rep(1l] += ~eta* (1.0/rho_float =1.0/rho_0)*sin((double) (i)*
0.392699)/ (rho_float) ;

}

/* compute the total force in the robot coordinates */
F_tol[0] = F_att[0] + F rep[0];

F_tol[l] = F _att[l] + F rep[l];

/* set the translational velocity */

tvel = (int) (gain_tvel * F tol[0]);
/* set the rotational velocity */
if ((F_tol[0]==0)&&(F tol[1l]==0))
svel = 0 ; -
else if ( F tol[0]==0 )
svel = 450 ;
else
svel = (int) (gain_svel * sin(atanZ(F_tol[l],F_tol[O])));

svel = svel * sign((int)(F_tol[O]));

/* limit the translational and rotational velocities */
if (abs(tvel) > 240)
tvel = 240 * sign(tvel);

if (abs(svel) > 450)
svel = 450 * sign(svel) ;

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these two so
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}

that the turret is always facing the direction of motion. */

vm(tvel, svel,svel);

else { /* If you are stuck */

D _goal[0]
D goalfl]

(double) (xgoal world-robot config[0]); /* x component */
(double) (ygoal world-robot config[1l]): /* y component */

distance = hypot (D _goal([0],D _goal[l]l) ;

/* If you entered this block for the first time, meaning that you
have just realized that you were stuck, make a 90 degree turn
towards the main body of the formation */

if ( first )({
dirdiff=200;

while (! (abs (dirdiff)<100)) {
tvel=0;
svel=dirdiff/5;
vm(tvel, svel, svel);
GetSensorData() ;

teta ((double) robot config([2])*PI/(1800.0);
xgoal = cos(teta)*D goal[0] + sin(teta)*D_goalll];
= -sin(teta)*D goal[0] + cos(teta)*D goal[l];

dirdiff = (int) (atan2(ygoal,xgoal)*1800.0/PI) +
sign(left)*1100 ;
}
first=0;
Dold goal([0]
Dold goal([1l]

~e e

(I
oo

}

/* Set the translational velocity according to panic flag */

if (!panic)
tvel = 20;

else :
tvel = 0;

/* If the robot moves towards the final goal point more than 30
inches for 4 successive times, it means, it turned the corner of the
obstacle and started to move towards the direction of motion of the
formation. In this case reset the stuck flag. */

if ( distance < (hypot(Dold goal{0],Dold goal[1])-30.0)) f{
count2++ ;
if (count2==

stuck =
count2 =

)y |
0;
0 ;

}

Dold goal[0}=D_goal[0];
Dold goal{l]=D goal[l];
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/* Watch the empty space on the direction of motion while following
the edge of the obstacle, and adjust the rotational velocity in
order to follow the edge and turn around the corner of the obstacle.

*/

X_compl = (double)fused range[l5] * cos(2.0*PI*15.0/16.0);
X_comp2 = (double)fused _range[0] * cos(2.0*PI*0.0 /16.0);
X_comp3 = (double)fused range[l] * cos(2.0*PI*1.0 /16.0);

if ((X_compl<15.0)II(X*comp2<15.0)ll(X_comp3<15.0)){
svel = 65*sign(left);

tvel = 5;
stuck = 0 ;
count2 = 0 ;
}
else
svel=0;

/* Also watch out the distance from the obstacle while following the
edges. Try to keep the same distance from the obstacle by adjusting
the rotational velocity. Sensor numbers are determined as to which
side is the obstacle. */

if (left==1) {

sonl = 14 ;

son2 = 13 H

son3 = 12 ;
}
else {

sonl = 2 ;

son2 = 3 ;

son3 = 4 ;

}
Y _compl = (double)fused range[sonl] * sin(2.0*PI*2.0/16.0);
Y _comp2 = (double)fused range[son2] * sin(2.0*PI*3.0/16.0);
Y comp3 = (double) fused range[son3] * sin(2.0*PI*4.0/16.0);
if (left==1) .

svel = svel - (int) (Y compl + Y compZ + Y comp3 - 90.0);
else

svel = svel + (int) (Y _compl + Y_comp2 + Y comp3 - 100.0);

if (abs(svel)<100)
svel=svel;

else
svel=svel*20/36;

if (stuck==0) {
tvel
svel

0 ;
0 ;

[

}
vm(tvel,svel,svel);

}
}

/*******************************/
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/* Read in sensor data and load into arrays. */
void GetSensorData ()

{

int i, index;

double corrected IR[16] ; /* Correlate infrared reading to distance */
long SonarRange[16]; /* Array of sonar readings (inches) */

long IRRangel[16]; /* Array of infrared readings (no units)*/
double corrected sonar([16] ; /* Array to store the corrected

sonar readings */
double norm[1l6] ;
long rob pos[l16] ;

/* Read all sensors and load data into State array. */
gs{():

/* Read State array data and put readings into individual arrays. */
for (i = 0; i < 16; i++)
{
/* Sonar ranges are given in inches, and can be between 6 and 255,
inclusive. */
SonarRange[i] = State[l17+i];

/* IR readings are between 0 and 15, inclusive. This value is
inversely proportional to the light reflected by the detected
object, and is thus proportional to the distance of the object.
Due to the many environmental variables effecting the reflectance
of infrared light, distances cannot be accurately ascribed to the
IR readings. */

IRRange[i] = State[l+i];
}

/* To correlate the infrared reading to physical distance. The numbers
are obtained by least square linear regression of measurement data. */

for (1 = 0; 1 < 16; i++)
corrected IR[i] = 2.2508 * ((double) IRRange([i] + 0.8602);

for (1 = 0; i < 16; i++)
corrected sonar[i] = (double) SonarRange[il];

/* Fuse the sonar and IR data, and store the final sensor reading into
the global array fused range[]. Infrared readings are not reliable
beyond 14 inches. If the correlated value is smaller than 14, then
normalize and fuse the infrared and sonar data. If it is more than

14, then consider the sonar data. */

for (i = 0; i < 16; i++)
{
if (IRRangefi] <= 14)
{
norm[i] = corrected sonar[i]*corrected sonar[il+
corrected IR[i]*corrected IR[i];

fused range[i] = (corrected sonar[i]*corrected sonar[i]*

corrected IR[i] + corrected IR[i]*
corrected IR[i]* corrected sonar(i])/norm([i];
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if (fused range([i] <= 5.0)
fused_range{i] = 0.0;
}
else
fused range[i] = corrected sonar[i];
}
/* Find out the sensor ID number which detects the closest robot */

minreturn = 0;
for (i =1 ; 1 < 16 ; i++) {
if (fused range(i] < fused range[minreturn])
minreturn = i ;

}

/* The robot configuration parameters (x, Y, steering angle, and
turret angle) are stored in State[34], State[35], State[36], and
State[37]. */

for (i = 0; i < 4; i++)
robot config[i] = State[34+1i];

/* Check for bumper hit. If a bumper is activated, the corresponding
bit in State[33] will be turned on. Since we don't care which bumper
is hit, we thus only need to check if State[33] is greater than zero.
*/
if (State[33] > 0)
{

BumperHit = 1;

tk("Ouch.");

printf ("Bumper hit!\n");
}

/* Get the position information of the robots around in robot's local
coordinate system */

get_rpx(rob pos) ;

/* Put the x - y coordinates of each robot in array, into the cell
that corresponds to each robot's ID number */

X coord[Robot ID]

_ robot config[0] ;
y_coord[Robot_ID]

= robot_config[l] ;

for (i=1 ; i<(3*rob pos(0]) ; i+=3 ) { :
x_coord[rob_pos[i]] = rob pos[i+l] + robot config[0] ;
y_coord[rob pos[i]] rob_pos[i+2] + robot config[l] ;

}

robots[0]=Robot_ID ;
index = 1 ;

for(i=1 ; i<=rob pos[0] ; i++){
robots[i]=rob pos[index] ;
index+=3 ;

}

signal = i ;
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/***********************/

/* Sign function. It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)
{
return x>0?1:-1;

}
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